
In,. .I. Hea, Mass Trmfm Vol. 29, No. I, PP. 135-143, 1986 
Printed in Great Britain 

0017-9310/86$3.00+0.00 
Per~amon Press Ltd. 

An asymptotic, large time solution of the 
convection Stefan problem with surface radiation 

NAOYUKI TOKUDA 
Faculty of General Education, Utsunomiya University, Utsunomiya, Japan 321 

(Receioed 22 April 1985 and injnalform 12 July 1985) 

Abstract-An asymptotic, large time solution has heen obtained for the convection Stefan problem with 
surface radiation. The moving boundary problem has heen reformulated as a fixed boundary problem where 
Lagrange-Biirmann expansions are used to complete the variable transformation. An asymptotic solution of 
the problem is obtained by requiring that the asymptotic expansions assumed for the interface position X(t) 
and wall temperature u,(t) for large times are consistent with the resulting interfacial Lagrange-Btirrnann 
expansions. It is found that the asymptotic expansions admit Neumann’s solution as the leading terms and that 
logarithmic terms start intervening at the third-order terms of the expansions for nonzero Stefan number. 

1. INTRODUCTION 

THIS PAPER presents an asymptotic, large time solution 

of the convection Stefan problem with surface 
radiation. Reviewing the literature on the Stefan 
problems, we find very few works on asymptotic 
solutions particularly at large times. Leading terms of 
the large time expansions for one-phase Stefan 
problems seem to have first been obtained by Cannon 
and Denson Hill [l] for temperature boundary 
specification and by Cannon and Primicerio [Z] for 
flux boundary specification. Using Stokes’ theorem, 
they formulate the Stefan problem of what Katz [3] 
classifies as finite bar configuration (see the remarks 
just below) in such a way as to allow an asymptotic 
evaluation of the leading term of the interface position 
X(t) as t -+ co. A more general approach is developed 
by Katz [3] for obtaining large time solutions of Stefan 
problems whereby asymptotic expansions are evalu- 
ated directly from an integro-differential repre- 
sentation of the Stefan problem, the approach 
originally due to Portnov [4] in the classical series 
expansion method. He also obtains leading terms of the 
asymptotic expansions for two classes of problems, one 
for the semi-infinite, the other for the finite bar 
configurations. From the analytical point of view, the 
latter is the more involved because of finiteness in 
dimension. For example, a large time solution of a 
crystal growth Stefan problem given in ref. [5] belongs 
to the semi-infinite bar configuration in Katz’s 
classification because one is only concerned with the 
concentration field in the melt system which extends 
over a semi-infinite domain. In spite of added 
complexities at the interfacial conditions due to the 
limiting rate of crystal growth, the asymptotic analysis 
was carried out without difficulty in inverse powers of 
time as in many classical asymptotic expansions for 
large values of coordinates (see ref. [6] for various 
examples). Some special technique must be devised to 
deal with the present case of finite bar. Our key strategy 

here is to reformulate the moving boundary problem as 
a fixed boundary problem. 

In this paper, we want to present an asymptotic 
solution, valid as t + co, of the one-phase convection 
Stefan problem with Newton’s radiation condition. 
After formulating the problem in Section 2, the moving 
boundary problem is reformulated as a fixed boundary 
problem whereby the method of Lagrange-Btirmann 
(LB) expansions plays a key role in completing the 
variable transformation. Here the new time-like 
variable r must be introduced such that z = O(t - ‘I*) as 
t -+ co. In the process, we find the nonlinear interfacial 
LB expansions for Xu.,,/( 1 - u.J and XX/( 1 - a.__) must 
balance the heat flux values at both ends of the growing 
phase, the latter depending on the temperature field. In 
the large time limit oft + co, neither the temperature 
function nor the mapping functions nor the LB 
expansions are expected to be analytic at z = 0 or as 
t + m because neither X nor II, are expected to be so 
in these regions. Therefore, we have to construct 
consistent asymptotic expansions for the temperature 
field, the LB expansions and the X and u, functions. 
The temperature functions are obtained in Section 4. 
The validity of the asymptotic expansions will be 
demonstrated in Section 5 by showing that the 
coefficients in the interfacial LB expansions as well as in 
X and u, functions can be determined with consistency. 
An inversion of the LB expansions is presented in 
Section 6. We find that the leading terms of the 
expansions for X and 11, admit the Neumann solution 
and that logarithmic terms start intervening at the 
third-order term of O(t-I’*) and 0(t-3/2), respectively. 
Within the framework of the present analysis, there is 
one constant C,, which may not be determined, 
reflecting the fact that the initial condition may not be 
enforced. In Section 7, we have determined the constant 
by patching with the numerical solution of the problem. 
We then get a good agreement down to as low as X = 2. 
For a mathematical justification for the construction of 
LB expansions from formal (merely asymptotic) series 
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NOMENCLATURE 

{a,}, {bi} coefficients of Lagrange-Biirmann X dimensionless interface position 
expansions for t&X2/( l-u,) and (1X2 Y J-* E a?& 

{Ci}, {di} coefficients of asymptotic 
expansions for X(t) and u,(t) Greek symbols 

gl(t), g2(t) mapping functions defined by ci Neumann constant 
Xu,/( 1 - uJ and X8/( 1 - uW), & Stefan number 
respectively rl fixed boundary coordinate defined as 

h(t) mapping function defined by X8 - 2 XIX 
pf(z),p:(7) composite functions given by 7 time-like variable defined by h(t). 

gl{h-‘l and g2W1) 
t dimensionless time Superscripts and other symbols 
t CA (4 kth approximations based on the 
u(q, 7) dimensionless temperature truncated LB expansions 

&v(t) dimensionless wall temperature derivative with respect to time 
{ui(q)} series solution of U(Q 7) derivative with respect to r~ 
X dimensionless distance -1 inverse function. 

such as the present ones, the reader is referred to Chap. thermodynamic equilibrium state, to the coolant 
1.9 of Henrici [7, p. 553. temperature u,, so that the boundary conditions reduce 

to that of temperature specification. Neumann’s exact 

2. FORMULATION 
solution is given as (see-[81 for example) 

Let the heating or cooling surface which effectively 
initiates the change of phase in this problem satisfy 
Newton’s law of radiation. The one-dimensional, one- 

x - 2aJt, (7) 

a erf (4 * a) exp (&a’) = J&i. (8) 

phase Stefan problem can be formulated as 

afi a% 
“at==’ 

Here a is Neumann’s constant satisfying the 
transcendental equation of (8). In series form, a is given 

(l) as 

g (0, t) = U(0, t) = u,(t), w=L 
Jz ( 1-~+$js2+... . > (9) 

$x&g, (3) 
Evidence is available in the literature to verify this 
asymptotic behavior. The analysis in [2] shows that 

li(X, t) = 1, 

X(0) = 0. 

(4) 

(5) 
-at) - B u,,,(Qd[ as t --t 00 (10) 

The Stefan number E and the dimensionless quantities where /3 is some constant less than unity satisfying, as 
x, X, E, t, ti and u, are related to the dimensional t+co 
quantities x*, X*, t*, u* and u$ as 

4% - uo) 
E=-E-t 

.=;.*, x$x*, 

2 
(6) 

t =EY t*, 
u*-u. u:--u. 

pkc 

fi=-----, u,=------ 

KS-u0 h--u0 

where c is the specific heat, p the density, L. the latent 
heat, k the thermal conductivity, us, uo, UC are the phase- 
change temperature, the coolant temperature and the 
wall temperature, respectively and y is the heat transfer 
coefficient by Newton’s law of radiation. 

In the limit of t + co, we physically expect the 
solution of the problem to approach Neumann’s 
solution because u$ above settles down, at such a 

Since our analysis establishes that u,,,(t) - 

aexp(sa’)/$ [see equation (61)], X - 2ao$ 
follows although the constant a0 must be determined by 
a more rigorous approach such as ours. Other evidence 
is found in the case of E = 0. An exact solution for this 
case is given in [9] as, 

(11) 

(12) 
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l-x 
ij=---_. 

1-x 

Examining the behavior of X and u, as t + co, we have 

x-2Jt72-1+ 
1 

----+ 
4fi .‘.’ 

1 1 w--___ + 
uw 2Jt/2 16(t/2)3’2 “” 

In the limit of E = 0, (9) gives a = l/fi thus recovering 
the Neumann solution of (7) as the leading term of (14). 
We want to establish this fact by demonstrating that the 
present problem indeed admits of such an asymptotic 
expansion, reproducing the asymptotic expansions of 
(14) for & = 0 in particular. 

3. FIXED BOUNDARY COORDINATES 

AND LB EXPANSIONS 

Introducing the transformation of (15) below, the 
moving boundary will be transformed into a fixed 
boundary problem. The new time-like variable z must 
be introduced such that z is almost unity as t -+ co. 

q=x, and r=h(F)=~$-2, (15) 

t = U2L (16) 

The new time scale of (16) is introduced here merely to 
simplify the later notations. We show that TV reduces to 
the Neumann constant satisfying (8). Assume that 
asymptotic expansions for X, I(, can be written as 

x-2J+C,+C,,~+C,,&+... 
Jr Jr 

(17) 

Hence we have 

z = h(t) - _$+2?0+... (19) 

2c 
$=h-l(7)+*72+.... (20) 

That logarithmic terms must intervene at O(F-1’2) and 
at 0(?3/2) for X and u, becomes evident if the 
asymptotic expansions developed are consistent. It is 
interesting to note that logarithmic terms in X do not 
appear in the asymptotic expansions for the h(S) 
function. The asymptotic expansions of (17) and (18) 
form the basic framework of the present analysis; it is 
essential that the temperature solution and the LB 
expansions are consistent with those forms assumed. 
Using the variables of( 15), the governing equations and 

boundary conditions reduce to, 

=ea2$X2(1-u)+scc’~~, (21) 
!# 

g,(T) = x lJw - = g1{h-‘(7)} = PI(Z) = 30,a (22) 
l-u, 

g2(T) = ff;’ --y = g2{h-‘(7)} = p2(7) = $(1,7), (23) 

u(0, 7) = 0, (24) 

U(l,T) = 1, (25) 

X(0) = 0. (26) 

Here the dot denotes differentiation with respect to z 
u is redefined as 

u-u, 
u=l-l(w. 

Since the analysis is valid only as F+ co, the initial 
condition of (26) may not be enforceable. The two 
interfacial and boundary conditions of (2) and (3) now 
reduce to the LB expansions (22) and (23) for g1 and g2 
functions, the RHS being equal to the heat fluxes to be 
specified at both ends of the interface. To construct the 
LB expansions, it is sufficient to develop asymptotic 
(formal) series expansions for g1 and g2 functions from 
(17)and(18)andthentocomposewithh-’(r)of(20)(see 
[7] for detailed discussions). This is followed below. 
From (17) and (18), we have 

gl =XU”N2dl 
l-u, 

+ W, + 2(d, + d:) 
J 

+(C,,d,+2d30)y 

+(2d,,+2d:+4d,d2+C2d:+C2d2+C31dl)~+ . . . . 

(27) 

By substituting (20) into tof (27), the LB expansion for 
~~(7) is now found to be 

gl{h- l(7)> = PI(~) - 24 + 
Czd, +2(d, +d:) 

c2 
7 

+ 2(&C,, +2&o) zz ln 7 

c: 

+ 
2d3, +2d:+CJ1dl +4dld2+C2d2+Czd: 

C: 

2C&Czd, +2d, + 2df) - 
C: 

-*nC~(C30d~~u30)]72+ . . . . 
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In the same way, ~~(7) is reduce to 

g2{h- i(7)} = p2(7) N 2a2 + gl=xu” 
l-u, = Pl(7) N ub(0) 

+7u;(o)+72u;(o)+ . ..) (37) 
+ 5 [2C2(d2 + d:) + C;dI -4d,C3,Jz2 + . . . . (29) 

2 

We require pi(z) and ~~(7) to match with &(O, 7)/~3~ and 
&(l, 7)/&l term by term. Now to solve the temperature 
function of(21), the underlined terms must be expressed 
in terms of7. This can be done as we have derived the p1 
and p2 functions just above. 

&X2 N - 3 - 2(c2;4c30) +. . .= a,7 +a272 +. . 
J (30) 

WX2,% -2d,_ ti 2(dz + Czd, + d:) 

l-u, J t 

+ . . . = b,z+b2z2+ _.. (31) 

where 

a, = -2, a,= -2 

bl=_$, 
2 

(32) 

Now substituting (30) and (31) into (21), we see that the 
temperature function t&7) is a function of q and 7. 
Let us assume that u has the following asymptotic 
expansion for small 7 or large t 

&I, 7) N U0k!) + 7”1(?) + 72u2(tl) + . . . (33) 

We will establish the validity of the asymptotic 
expansions (33), (17) and (18) by matching(28) and (29), 
term by term, with the RHS of (22) and (23) which 
inevitably depends on (33). We formulate {ui} functions 
in Section 4 and demonstrate the matching in Section 5. 

4. TEMPERATURE FUNCTIONS 

Now the temperature solution can be determined by 
substituting (30) and (31) into (21) subject to the 
boundary condition of (24) and (25). The appropriate 
governing equations and boundary conditions are 
then, 

u;+2sa2qu; = 0, u,(O) = 0, uo(l) = 1, (34) 

u’; +2scz2r& +2.sa2u, = ea’[b,(l -uO)-t&J, (35) 

u’; + 2ea2qu2 + 4Ea2u2 = 

ea2[a2u,+b2(l-u,)-b,u,-vu;]..., (36) 

~~(0) = u*(l) = 0 for i 2 1. 

In terms of {Us}, the LB expansions of (22) and (23) 

XPa2 
g2 = 1 -u, 

- = P2(7) w u;(l) 

+7u;(l)+72u;(1)+ . . . . (38) 

Here the primes denote differentiation with respect to q. 
{uI} of (34), (35), etc. satisfy linear differential equations 
of error integral type and can be determined in closed 
form. Since undetermined constants a,, u2, etc. are 
involved in those equations, the best procedure is to 
execute the computations step by step, determining 
the coefficients of the LB expansions such that the 
expansions (28) and (29) are consistent with the 
asymptotic expansions of (37) and (38), the latter 
resulting from the solutions of {ui} of (34), (35), etc. 

5. DETERMINING THE COEFFICIENTS 
OF THE LB EXPANSIONS 

u. and coejicient d, 
u. satisfying (34) is given by 

We put Y = & * a? hereinafter. Hence we have 

2&a 
h(O) = G erf (&. a) = 2a2 exp(&a’), (40) 

ub( 1) = 
2&*aexp(-Ea’) 

&erf(&*a) = 2a2. 
(41) 

To develop consistent asymptotic expansions, we 
require that t&(l) of (41) matches with the first term of 
(29). This immediately implies that the Neumann 
relation of (8) must hold. So we see that the present 
solution admits Neumann’s solution as the leading 
term of the asymptotic expansion as t -+ co. Note that 
(8) gives much simpler expressions compared to the 
second terms of the RHS of (40) and (41), respectively. 
Now comparing the first term of(37) with that of(28) we 
have 

d, = a2 exp(sa’). (42) 

u1 and coeficients C2, d2 
u1 satisfying (35) is 

u1 = - ;(l-uo) + rub - +exp(- Y2) 

a2-b, exp(-sa2)/2 - 
Dw(& - a) 

h(Y), (43) 

where b, = -2d,/C, from (32) and Dw denotes the 
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Dawson integral [lo] defined as 

s 

r 
Dw( Y) = exp (- Y2) exp (t’)dt. (44) 

0 

Hence the first derivative of ur is 

u\(q) = &*a [ 9 ub+gu;+b,Yxexp(-YZ) 

x a’-b, exp(-&at)/2 

Dw(JL.a) 
{l-2YDw(Y)} . 1 (45) 

Accordingly 

(46) 

. (47) 

First comparing with the second term of the LB 
expansion of g2, namely (29) and (38), we have 

c* = -1. (48) 

From the LB expansion for gi, we have 

d, = 0. (49) 

Equations (48) and (49) imply that u1 of (43) simplifies 
considerably to 

i4i = -d,(l-u,)+~ub-d,exp(-Y*). (50) 

u2 and coeficients C,,, da,, da, and C,, 
u2 satisfying (36) is 

a,-b, 
IL* +(l-uo)+~ 4 

u,+;(Yu;+2u,)-- 
2&*a 

x 1--26,+$Dw(&*a) exp(-Y*) 1 

where 

Dw,(Y) = - 1+2YDw(Y) (52) 

x(1-2Y’)+~(l-2Y’)Dw(Y)+~Y . 1 (53) 

Using (48) and (49), the constants given in (32) simplify 
to 

a, = -2-4C30, b2 = 2dl(l -dI -2C,,). (54) 

Hence we have 

u;(O) = $ -2df - 
[ 

wDw,(,,&*a) 

+Cso 
1 

12d,-4+ ~DwI(&.or) 11 > (55) 

di(l--dl) _2Ea2 
a2 

+ C,o 12d,-4-$ >I . (56) 

The constant C,, can be determined by matching the 
third term of (29) and (56) giving 

[( l-d, 
Go = d, 3d+,) +&a* ]/ 

[2(+1 -$)I. (57) 

Now that O(z*ln z) does not appear in the LB 
expansions of (28) d,, must satisfy 

d,Cao d,, = - -. 
2 

The term of 0(t*) then requires that 

da1 = C,,d: l+ 
DwA&* 4 + 3 

2a2 I 2 

(5% 

Since C,, is still arbitrary, d91 remains indeterminate. 
Within the framework of the present asymptotic 
analysis, the constant C3 i may not be determined. This 
reflects the fact that the initial condition at t = 0 may 
not be enforceable. 

Putting t= a*t, the present asymptotic solutions are 
summarized below. 

x-2flfi-l+c3~f;;u2f+-5$+... (60) 

TV N 
aexp(ca’) + d,,lna*t d,, 

J; 
------++ 
,3p/* a3t3/* 

+ . . . (61) 

g1 =x uw - = pi(z) - 2d, +d,(l-2d,)z+(2d:-d: 
l-u, 

+4C,,d;-2C3,dl +C31dl -2d&* + . . . (62) 

XZa* 
g*=l--u,= p*(7) N 2a2 + (l -2d,)a*t 

+a2(2d:-d,+4C3,d,)z2 + . . . . (63) 

Here d,, C,,, d,, and d3, are given in (42), (57)-(59) 
while C,, remains arbitrary. 

6. INVERSION OF LB EXPANSIONS 

In Stefan problems, we want to determine, among all 
variables, X and u, functions. To determine them, one 
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may either evaluate (60) and (61) asymptotically or 
invert the LB expansions of (22) and (23). The details of 
the inversion scheme are demonstrated below. It is 
instructive to point out here that, unlike the expansions 
of(60)and(6l)whichcontainanarbitraryconstant Cai, 
the coefficients in the interfacial LB expansions are fully 
specified. To show this fact specifically, we directly 
substitute the values of temperature derivatives 
obtained in Section 5 into (22) and (23) to obtain 

p1 - 2di +&(l-2d,)z 

+9 -2d:-~Dw,(&z)+2C,, 

x 
1 

6d,-2+ ++&,/&a) II z*+ . . . . (64) 

P2 

We should note that by the particular choice of 
constants d,, C3,,, C31, d,, as found in Section 5, they 
obviously agree with the expansions of(62) and(63). It is 
easy to see that d, i is so chosen in (62) so as to cancel the 
indeterminate constant Csi from the LB expansions. 
This may suggest that X and u, can be determined fully 
without encountering indeterminate constants thus 
contradicting the expansion of (60); but an arbitrary 
constant always appears at O(t-‘I*) in the inverted 
results as we shall show below. To invert, first truncate 
the LB expansions of (64) and (65) at the kth power of 7, 
eliminate u, from p1 and p2 terms of (62) and (63), solve 
the polynomial equation for 7, thus setting up the first- 
order differential equation for X(‘). This is carried out 
for k = &2 below. 

O(r'O') 

First we truncate the LB expansions of (64) and (65) 
at O(zco)). Then eliminating UC), one sets up a first- 
order differential equation for X(O) which gives when 
integrated 

X(O) = J4a2t + { 2a2 exp (~a*)}* + C - 2a2 exp @a’), 

(66) 

(0) = Kv 
2a2 exp (&a*) 

J4azt + 4a2 exp’ (&a*) + C’ 
(67) 

Here a superscript(k) denotes the solution from the LB 
expansions truncated at O(rt’)). C is an integration 
constant and remains arbitrary within the framework 
of the present asymptotic analysis. X(O) and u$‘) have the 
following asymptotic expansions. 

X(O) - 2aJt - 2a2 

x exp (&a’) + 
C + 4a4 exp* (&a’) + . 

4aJi ” ’ 
(68) 

(0’ N a exp (&a*) 
u, 

& 

- exp (&a’){ C +4a4 exp* (aa’)} + 

8at312 
. . . (69) 

Note that the leading terms of both (60) and (61) are 
correctly reproduced as it should be. Arbitrariness 
remains at O(f- ‘I*) and 0(t-3/2) for X and u,, 
respectively, as in (60) and (61). 

O(7) 

Following the same procedure, X(i) and ulf) can be 
again obtained in closed form as 

X’1~+2(d,+1)~[X’1’]2+4(1-d,)X,+4d~ 

+4(1-d,)ln{2X”)+2(1-d,) 

+2J[X(“]‘+4(1-d,)Xc’)+4d:} 

+ [X”‘]* +4d,X(‘) = 8a*t + C (70) 

(1) = 
2d, +d,(l-2dI)[X(“_@‘)-2a2] 

%V 2d,+d,(l-2d,)[X(1)~(1)-2a2]+X(1)’ (71) 

Fort-co, 

l-2d, 
X(l) m 2aJi - 1 - - 

3a$ 
In a*t 

+ 
l-d,-d;+C 

2aJ; 
+ . ..) 

4’ N 
a em @a’) + ddl -24) ln a2t 

J; a3t3/2 

+ &{d,(l-2d,)-CJ+ . . . . (72) 

Xt’) and ua) again reproduce the asymptotic 
expansions (60) and (61) correct to the second terms of 
the expansions. It is most interesting to note that the 
present two-term expansions reproduce logarithmic 
terms which appear only in the next order of the 
classical asymptotic expansions of (60) and (61). 

0(7'*') 

To carry out the inversion, a numerical approach is 
far simpler from this order on. For example, elimination 
of u, from (64) and (65) gives a cubic equation in 7 at this 
order. This is easily solved by Newton’s method giving 

$2’ dX’*’ 

w = 7 dt 
~ -2 = F[X”); dl,C30,E,a]. (73) 

The solution F is a function of Xt2) with additional 
dependence on parameters such as d,, etc. Equation 
(73) can be solved numerically by a Runge-Kutta 
method starting at sufficiently large values of X = 20. 
The numerical results are tabulated in Table 1 and 
compared with the finite-difference solution of the 
problem [ 111. Initial values oft at X = 20 are estimated 
from (60) retaining the appropriate order of the 
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Table 1. Constants CsO, C,,, d3,,, d,, 

E C 30 C 31 d 30 d 31 

0.0 0.0 0.250 0.0 - 0.0625 
0.1 - 0.0278 0.34 0.0071 -0.095 
0.5 -0.1174 0.60 0.0315 -0.19 
1.0 -0.1953 0.90 0.0551 -0.36 
2.0 -0.2607 1.4 0.0770 -0.60 

approximations. For example, to compute t(‘) we need 
Csl. We discuss in Section 7 how these constants are 
estimated from the numerical solution of [ll], Then we 
see that the inverted results for X and u, give quite good 
agreement with the numerical solution even at such 
small values of X as 2. 

7. DISCUSSIONS 

We have obtained the first three terms of the 
asymptotic expansions for X and u, functions 
consistent with the LB expansions of the convection 
Stefan problem with surface radiation valid for large 
values of time. We have seen that a logarithmic term 

appears at the third term of (lnt/fi) with an 

undetermined constant C3 1 appearing at 0( l/d). The 
constant can only be determined if the initial condition 
of(26) can be taken into account. Before estimating the 
constant, we will show below that our results reproduce 

the exact solution of (11) and (12) with E = 0 correctly. 
Now if E = 0, (8) gives 

dl = u2 = I/2, C,, = d,,, = 0. (74) 

In fact, for E << 1, we have 

7 7 
C 30% -zE and d,, N ---E. 

96 

Now the large time expansion of (14) gives 

c,, = I/4. 

Then (59) with E = 0 gives 

(75) 

d31 = -l/16. (76) 

Equation (76) is verified by the second term of the large 
time expansion of u, of (14). So our results reproduce 
the exact solution of (11) and (12) asymptotically 
correct to this order, if C, 1 = l/4. Also we note that (74) 
implies that logarithmic terms disappear altogether at 
E = 0 and the solution is regular everywhere provided a 
cut is inserted between - l/2 and - co [see equation 

(1111. 
Now for nonzero E’S we may estimate C,, from the 

finite-differencesolution oftheproblem. Using(60), C, l 
may be estimated, with reasonable accuracy, by (77) 
below if X is sufficiently large. 

CSI N .J;~-(z+1+ “3;$!“}]. (77) 

Table 2. Numerical results of interface position 

Position 

X 

Asymptotic 
Inverted LB expansion Finite- expansion 

difference equation (60) 
&=o.l 

r(O) r(l) $2) Cl11 t(2) 

1.0 1.57 
2.0 4.67 
5.0 18.16 

10.0 62.14 
20.0 227.6 

1.0 1.82 
2.0 4.80 
5.0 20.67 

10.0 70.27 
20.0 256.2 

1.0 2.18 
2.0 5.54 
5.0 18.45 

10.0 79.71 
20.0 289.0 

1.0 2.67 
2.0 6.93 
5.0 29.23 

10.0 98.17 
20.0 352.2 

2.02 1.52 
4.60 4.12 

18.56 18.10 
62.47 62.0 

227.7 227.3 

E = 0.5 
2.06 1.71 
4.98 4.16 

20.67 20.41 
69.90 69.70 

255.1 255.3 

E= 1.0 
2.09 1.82 
5.41 5.13 

23.10 22.90 
78.46 78.43 

286.6 286.8 

E = 2.0 
2.29 1.49 
6.38 5.47 

28.02 27.18 
95.7 95.05 

350.0 349.6 

1.53 
4.10 

17.97 
- 
- 

1.65 
4.50 

20.12 
- 

1.80 
4.99 

22.49 
- 

2.05 
5.83 

26.78 
- 

1.22 
3.95 

18.01 
61.98 

227.3 

Z86 
20.02 
69.50 

255.3 

3.24 
22.13 
78.06 

286.8 

- 
8.72 

25.80 
94.45 

349.6 
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Whenestimated by(77),forexample, C,, of 1/4of(75)is 
computed to be 0.247 and 0.248, respectively, where the 
exactvaluesof(X = 4,t = 12)and(X = 5,t = 17.5)are 
used. So we believe (77) gives an adequate accuracy for 
practical purpose. C3 1’s are computed for several values 
of E by (77) using the numerical values of [ 1 l] at X = 4 
and X = 5. Results are tabulated in Table 1 together 
with other constants such as &,, C,,, etc. Once these 
constants are estimated, (60) can be solved for t by 
Newton’s method. The results are tabulated in Table 2 
for comparison with the inverted results of the LB 
expansions of Section 6. The inverted results seem to 
agree better with the numerical results even at small 
values of X. 

It is interesting to note that although the expansions 
for X and u, suffer a logarithmic term, the LB 
expansions do not contain any logarithmic term at least 
up to the order considered. It may appear at higher 
orders but it is possible that singularities in X and u, are 
such that they cancel each other when combined to 
form g, and g2 functions. Within the framework of the 
present analysis, it is impossible to make a definite 
conclusion on this point. 

Since the initial conditions at t = 0 are irrelevant, the 
present solution can be used to describe a large time 
behavior of a wide class of Stefan problems provided 
the problem settles down to the Neumann solution. 

Acknowledgement-The author is grateful to the referee for 

many useful comments. The present work has been partially 
supported by a grant-in-aid from the Ministry of Education. 

REFERENCES 

1. J. R. Cannon and G. Denson Hill, Remarks on Stefan 
problem, J. Math. Mech. 17,433-441(1967). 

2: J. R. Cannon and M. Primcerio, Remark on one-phase 
Stefan problem for the heat equation with the flux 
prescribed on the fixed boundary, J. Math. Anal. Appl. 35, 
361-373 (1971). 

3. H. Katz, A large time expansion for the Stefan problem, 
SIAM appl. Math. 32, l-20 (1977). 

4. I. G. Portonov, Exact solution of freezing problem with 
arbitrary temperature variation on fixed boundary, Soviet 
Phys. Dokl. 7,186189 (1962). 

5. N. Tokuda, A large time solution of a crystal growth 
Stefan problem, J. Crystal Growth 67, 369-374 (1984). 

6. M. D. Van Dyke, Perturbation Methods in Fluid 
Mechanics. Academic Press, New York (1974). 

7. P. Hen&i, Applied and Computational Complex Analysis, 
Vol. 1. John Wiley, New York (1974). 

8. H. J. Carslaw and J. C. Jeager, Conduction of Heat in 
Solids. Oxford University Press. Oxford (1959). 

9. R. E. Pedroso and G. ;\. Domoto, Exact s&tion by 
perturbation method for the planar solidification of a 
saturated liquid with convection at the wall, Int. J. Heat 
Mass Transfer 16,1816-1819 (1973). 

10. M. Ambrowitz and L. A. Stegun, Handbook of 
Mathematical Functions. National Bureau of Standards, 
Washington, DC (1964). 

11. N. Tokuda, Numerical and series solution of a Stefan 
problem, Rot. 1st Int. Conference on Numerical Methods 
in Thermal Problems. Pineridge Press, Swansea, pp. 159- 
172 (1979). 

UNE SOLUTION ASYMPTOTIQUE, POUR UN TEMPS GRAND, DU PROBLEME DE 
CONVECTION DE STEFAN, AVEC RAYONNEMENT DE SURFACE 

R&m&-Une solution asymptotique du problhme de convection de Stefan pour un temps grand est obtenue 
dans le cas d’un rayonnement de surface. Le problZme de front&e mobile est reformuliz en un probleme de 
front&e fixe oti les d6veloppements de Lagrange-Biirmann sont utilids pour compl&ter la transformation. 
Une solution asymptotique du problkme est obtenue sous rtserve que les dBveloppements asymptotiques 
admis pour la position X(t) de l’interface et la tem@rature de paroi u,(t) pour des temps grands sont 
compatibles avec les dbveloppements de Lagrange+Bihmann g l’interface. On trouve que les dhveloppements 
asymptotiques admettent la solution de Neumann comme terme principal et que les termes logarithmiques 
commencent gintervenir dans les termes de troisikme ordre des d6veloppements pour un nombre de Stefan nul. 

EINE ASYMPTOTISCHE LANGZEITLOSUNG DES KONVEKTIVEN STEFANPROBLEMS 
MIT OBERFLACHENSTRAHLUNG 

Zusammenfaasung-Eine asymptotische Langzeitliisung wurde fiir das konvektive Stefanproblem mit 
Ober&henstrahlung ermittelt. Das Problem beweglicher Begrenzungen wurde in ein Problem mit festen 
Grenzen umformuliert. Bei der Variablen-Transformation wurden Lagrange-Biirmann-Entwicklungen 
angewandt. Eine asymptotische Liisung des Problems erh&lt man mit der Annahme, dal3 die asymptotischen 
Entwicklungen fiir die Grenzlliichenposition X(t) und die Wandtemperatur h(t) fiir lange Z&ten mit den nach 
Lagrange-Biirmann ermittelten iibereinstimmen. Die asymptotischen Erweiterungen beeinhalten als 
Hauptterme die Neumann&he Liisung. Logarithmische Ausdrticke beginnen bei Termen dritter Ordnung 

der Entwicklungen einzugreifen, wenn die Stefanzahl von Null verschieden ist. 



An asymptotic, large time solution of the convection Stefan problem 

ACWMITTOTBYECKOE PEIUEHRE HA EOJIbIIIRX BPEMEHAX KOHBEKTHBHOR 
3AAAWi CTEQAHA C YZIETOM M3JIY9EHHJl I-IOBEPXHOCTki 

AUHOT~~HS-&WI KoHBeKTHBHoii 3anave CTe@aHa, BKnlovatolqeii n3nyqeHHe nowpxHocT~, nonyveH0 

8cHMnToTwtecKoe pemeawe, cnpaeennasoe Ha 6onbmax BpeMeeax. C no~ouudo npeO6pa30BaHHx 

JIarpaHma-PlopMatia coeepmeH nepexon x sajwie c HenoABmiwbwn rpamiuawi. IkxonR ~3 ~UI~BHS, 

YTO npennonaraeMbIe acnMnToTwieCKne pa3nolKetnin wn nono~etnifi rpaHHuhl pa3nena X(~)H Tebme- 
paTypbI CTeHKU npH 6onbruex BpeMeHaX COrJtaCyloTUl C pa3JIOXteHHxMH narpaHXCa-6lOpMaHa LIJIJI 

rpafniubl pasnena nonyseso acwnToTwtecKoe pemeeae. HaiiueHo, ST0 pemeriae HeiiMaHa npencrae- 

JlleT ~060s rJIaBHbIii WeH aCEiMnTOTI1~eCKOrO pa3noxewin H 'iTO B wretiax TpeTbero nopnnKa M~OCTU 
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